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Chapter 3: Lyapunov Stability of 
Autonomous Systems
In this chapter we review the general stability analysis of 
autonomous nonlinear system, through Laypunov direct and 
indirect methods, and invariance principles. Furthermore, 
Lyapunov function generation and Lyapunov-based controller 
design are reviewed in detail

Nonlinear Control
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Lyapunov Stability of Autonomous Systems
5

• Definitions
 Consider the closed-loop autonomous system 

ሶ𝑥 = 𝑓 𝑥 (3.1)        

• Where 𝑓: 𝐷 → 𝑅𝑛 is a locally Lipschitz map, 

• With eq. point @ origin.

3.1 (3.1)
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Lyapunov Stability of Autonomous Systems
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• Stability Definitions
 Stability in sense of Lyapunov:

• The system trajectory can be kept arbitrary close to the equilibrium 
point.

 Geometric Representation 


Stable in sense

of  Lyapunov
Asymptotically 

Stable

ox

Unstable
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Lyapunov Stability of Autonomous Systems

7

• Stability Definitions

 Example: Van der Pol

• ∃𝜖 that the trajectories diverges 

• Unstable Eq. Point

• Stable Limit Cycle

 Example:  Pendulum 

• ∀𝜖 → ∃𝛿 starting from inside 𝛿 the 

trajectory remains in 𝜖

• Stable (not asymptotically) 



7

∃𝛜

∀𝛜
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• Stability Definitions

 Exponential Stability

 Global Stability

Lyapunov Stability of Autonomous Systems
8

𝟑. 𝟐

𝟑. 𝟑
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Lyapunov Stability of Autonomous Systems
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• Lyapunov Direct Method: The Concept

 Mathematical extension of a physical observation:

• If the total energy is continuously dissipating

• Then the system (Linear or Nonlinear) must settle down to an 
equilibrium point.

 Example: Mass with nonlinear spring-damper

• Consider the system:

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 ሶ𝑥 + 𝑘0 + 𝑘1𝑥
3 = 0

• hardening spring + nonlinear damping

– Is the resulting motion stable?
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Lyapunov Direct Method
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• The Concept

 Examine the total energy

• Physical observations:

– Zero energy corresponds to the equilibrium point (𝑥 = 0, ሶ𝑥 = 0)

– Asymptotic stability implies the convergence of the total energy to 

zero

– Instability is related to the growth of total energy

• Stability is related to the variation of energy

ሶ𝑉 𝑥 = 𝑚 ሶ𝑥 ሷ𝑥 + 𝑘0𝑥 + 𝑘1𝑥
3 ሶ𝑥 = ሶ𝑥 −𝑐 ሶ𝑥 ሶ𝑥 = −𝑐 ሶ𝑥 3

– The energy of the system is continuously dissipating toward zero

– The motion is converging to eq. point.
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Lyapunov Direct Method
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• The Concept

 The energy function has three properties:

• 𝑉 𝑥 is a scalar function.

• 𝑉 𝑥 is strictly positive except @ origin.

• ሶ𝑉 𝑥 is monotonically decreasing.

 In 1892 Lyapunov showed that 

• A certain other function could be used instead of energy 

– Find a positive-definite function 𝑉 𝑥 in 𝐷 ⊂ 𝑅𝑛

– whose derivative along trajectory is continuously decreasing

– Then the eq. point is asymptotically stable.
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Lyapunov Direct Method
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• Direct Method

 Positive Definiteness

• Geometrical Representation

• Negative Definite

– If – 𝑉(𝑥) is positive definite

• Positive Semi-Definite

– If 𝑉(0) = 0 and 𝑉 𝑥 ≥ 0 for 𝑥 ≠ 0

• Time derivative or derivative along trajectory
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• Local Stability

 Proof Idea:  (Full proof in next slide)

– Lyapunov level Surface: 𝑉 𝑥 = 𝑐 for 𝑐 > 0.

– If  ሶ𝑉 𝑥 < 0, then a trajectory crossing a Ly. S., it moves inside and 
can never come out again.

Lyapunov Direct Method
14

3.1

(3.2)

(3.3)

(3.4)

(3.1)
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Lyapunov Direct Method
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• Proof

 Given 𝜖 > 0 choose 𝑟 ∈ 0, 𝜖 , ∋

Let 𝛼 = min
| 𝑥 |=𝑟

𝑉(𝑥). Then 𝛼 > 0 by (3.2).

Take 𝛽 ∈ 0, 𝛼 , and let 

Then, Ω𝛽 is in the interior of 𝐵𝑟. Any trajectory starting from Ω𝛽 at 𝑡
= 0, stays in Ω𝛽 for all 𝑡 ≥ 0, because 

From existence theorem, since Ω𝛽 is a compact set, (3.1) has a unique 

solution whenever 𝑥 0 ∈ Ω𝛽. As 𝑉(𝑥) is continuous and 𝑉 0 = 0, 

∃𝛿 > 0, ∋,                                         Then 

and
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• Proof (Cont.)
Therefore

which shows that the eq. point is stable.                            □

 To show asymptotic stability
Assume (3.4) holds as well. To show that lim

𝑡→∞
𝑥 𝑡 = 0, one may show that 

∀𝑎 > 0, ∃𝑇 < 0 ∋ 𝑥 𝑡 < 0 ∀𝑡 > 𝑇.
Repeat the previous argument for every 𝑎 > 0 we can choose 𝑏 > 0 such that

Ω𝑏 ⊂ 𝐵𝑎. Therefore, it is sufficient to show that lim
𝑡→∞

𝑉 𝑥(𝑡) = 0 .

Since 𝑉 𝑥(𝑡) is monotonically decreasing and bounded from below by zero.

𝑉 𝑥(𝑡) → 𝑐 ≥ 0, as 𝑡 → ∞
To show 𝑐 = 0, use contradiction proof. Suppose 𝑐 > 0. By continuity of 𝑉 𝑥
∃𝑑 > 0 ∋ 𝐵𝑑 ⊂ Ω𝑐. The above limit implies that the trajectory 𝑥(𝑡) lies outside the ball 
𝐵𝑑 , ∀𝑡 ≥ 0. Let 𝛾 = max

𝑑≤ 𝑥 ≤𝑟

ሶ𝑉(𝑥), By (3.4) −𝛾 < 0, then 

Since The right hand side will eventually become negative, the inequality contradicts 
the assumption that 𝑐 > 0.

Lyapunov Direct Method
16
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Lyapunov Direct Method
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• Lyapunov function

 A Continuously differentiable function 𝑉(𝑥) satisfying (3.2) 
and (3.3) is called a Lyapunov function.

• The surface 𝑉 𝑥 = 𝑐 for some 𝑐 > 0, is a Lyapunov surface

– Use the following Lyapunov surfaces:

– To make the theorem intuitively clear. 

– Upon the condition (3.4)

• The trajectories crossing a Lyapunov surface

moves inside and never come out again.

• Note if ሶ𝑉 𝑥 ≤ 0, then the trajectories may stall! 

• It means it is stable (not going outside)

• But not necessarily asymptotic stable.

– If ሶ𝑉 𝑥 < 0, then the Lyapunov surfaces will 

shrink to origin. Implying asymptotic convergence.
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Lyapunov Direct Method
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• Example 1: Pendulum without friction

• System:

• Lyapunov Candidate:

– How??! (Total Energy)

– It is positive definite in the domain 

• Lyapunov Function?

– Derivative along trajectory:

– Eq. point is stable.

– But not asymptotically stable!

– Trajectory starting @ Ly. S. 𝑉(𝑥) = 𝑐, remain on it.
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Lyapunov Direct Method
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• Example 2: 

 Pendulum with viscous friction

• System:

• Lyapunov Candidate:

– The same as Ex1. (Total Energy)

• Lyapunov Function?

– Derivative along trajectory:

– Positive Semi-definite: zero irrespective of 𝑥1
– Only stable but not asymptotically stable!

– Phase portrait and linearization method  Asy. Stable.

 Lyapunov direct conditions are only sufficient!
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Lyapunov Direct Method
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• Example 2: 

 Pendulum with viscous friction

• Use another Lyapunov Candidate:

• Lyapunov Function? 

– 𝑉(𝑥) > 0 if

• Derivative along trajectory:

– If  𝑝12 = 0.5 𝑘/𝑚, then

becomes neg-def. over the domain 
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Lyapunov Direct Method
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• Example 3: 

 Consider the general 1st order system
ሶ𝑥 = −𝑔(𝑥)

Where 𝑔(𝑥) is locally Lipschitz on (−𝑎, 𝑎), and satisfies: 

Like in figure. Lyapunov Candidate:

– How??! (Total Energy)

– It is positive definite in the domain 𝐷 = (−𝑎, 𝑎) .

• Lyapunov Function? 

– Derivative along trajectory:

– The eq. point is Asymptotically stable.
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Lyapunov Direct Method
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• Example 4: 

 Consider the following system:

• The eq. point is @ origin.

• Lyapunov Candidate:

– Derivative along trajectory:

– It is negative definite in a ball:

– The eq. point is asymptotically stable.
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Scientist Bio
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Aleksandr Mikhailovich Lyapunov
(June 6 1857 – November 3, 1918)

Was a Russian mathematician, and physicist. He was the son of an astronomer. 
Lyapunov is known for his development of the stability theory of a dynamical
system, as well as for his many contributions to mathematical 
physics and probability theory. 

He studied at the University of Saint Petersburg. In 1880 Lyapunov received a 
gold medal for a work on hydrostatics. Lyapunov's impact was significant, and a 
number of different mathematical concepts therefore bear his name: Lyapunov 
equation, Lyapunov exponent, Lyapunov function, Lyapunov fractal, Lyapunov 
stability, Lyapunov's central limit theorem, and Lyapunov vector. 

By the end of June 1917, Lyapunov traveled with his wife to his brother's place 
in Odessa. Lyapunov's wife was suffering from tuberculosis so they moved 
following her doctor's orders. She died on October 31, 1918. The same day, 
Lyapunov shot himself in the head, and three days later he died.

https://en.wikipedia.org/wiki/Lyapunov_equation
https://en.wikipedia.org/wiki/Lyapunov_exponent
https://en.wikipedia.org/wiki/Lyapunov_function
https://en.wikipedia.org/wiki/Lyapunov_fractal
https://en.wikipedia.org/wiki/Lyapunov_stability
https://en.wikipedia.org/wiki/Lyapunov%27s_central_limit_theorem
https://en.wikipedia.org/wiki/Lyapunov_vector
https://en.wikipedia.org/wiki/Odessa
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Lyapunov Direct Method
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• Global Stability

 If the origin is asymptotically stable

• Define Region of Attraction (RoA)

– Let 𝜙(𝑡; 𝑥) be the solution for (3.1), Then RoA is the set of all points 𝑥
such that 𝜙(𝑡; 𝑥) is defined, and ∀𝑡 ≥ 0, lim

𝑡→∞
𝜙 𝑡; 𝑥 = 0.

• Analytic determination of RoA is hard or even impossible.

• Lyapunov functions may be used to find an estimate of RoA.
– Assume a Ly. Function is negative definite in a domain D.

– Assume Ω𝑐 = 𝑥 ∈ 𝑅𝑛 𝑉(𝑥) ≤ 𝑐} is bounded and contained in 𝐷.

– Every trajectory starting in Ω𝑐 converges to origin.

– Ω𝑐 is a (conservative) estimate of the RoA.

 If RoA is 𝑅𝑛 then eq. point is globally asymptotically stable.
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Lyapunov Direct Method
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• Global Stability (Barbashin-Krasovshii)

• For small 𝑐 the Ly. Surfaces 𝑉(𝑥)
= 𝑐 are closed, but for large c the Ly. S. 

are not closed, then the trajectory may 

diverge.

Radial ly  Unbounded

Radial  Unboundedness
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Lyapunov Direct Method
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• Example 5: 

 System as in Ex3:         ሶ𝑥 = −𝑔(𝑥)
In which, 𝑔(0) = 0 and 𝑥𝑔 𝑥 > 0 for 𝑥 ≠ 0

• Lyapunov Candidate:        𝑉(𝑥) = 𝑥2

– It is positive definite in the whole space

– It is radially unbounded

• Lyapunov Function? 

– Derivative along trajectory: ሶ𝑉 = 2𝑥 ሶ𝑥 = −2𝑥𝑔(𝑥)

– Hence,                             ሶ𝑉 < 0 as long as 𝑥 ≠ 0.

– Hence, the origin is globally asymptotically stable.

• Typical Examples 

– ሶ𝑥 = −𝑥3 OR    ሶ𝑥 = sin2 𝑥 − 𝑥, (sin2 𝑥 ≤ sin 𝑥 < 𝑥 )

– 𝑥𝑔 𝑥 = 𝑥4 > 0 and   𝑥𝑔 𝑥 = 𝑥2 − 𝑥 sin2 𝑥 > 𝑥2 − 𝑥 𝑥 > 0
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Lyapunov Direct Method
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• Example 6: 

 Consider the following system:

• The eq. point is @ origin.

• Lyapunov Candidate:

– Derivative along trajectory:

– It is negative definite everywhere,

– It is radially unbounded,

– The eq. point is globally asymptotically stable.
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Lyapunov Direct Method
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• Some Remarks:

1. Use total energy as the first Lyapunov candidate, but don’t 

limit yourself to that.

2. Many Lyapunov functions exist for a system. If 𝑉(𝑥) is a 

Lyapunov function, so is 𝑉1 = 𝜌𝑉𝛼.                    .

3. Lyapunov theorems are sufficient theorems, if a Lyapunov 

candidate doesn’t work, search for another one!
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Lyapunov Direct Method
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• Instability Theorem: (Chetaev)

 Let 𝑉: 𝐷 → 𝑅 be a continuously differentiable function on Domain 𝐷 ⊂ 𝑅𝑛.

 Let 𝐷 contain the origin, and 𝑉(0) = 0.

 For a point 𝑥0 arbitrary close to origin 𝑉(𝑥0) > 0.

 Choose 𝑟 > 0 such that the ball 𝐵𝑟 = 𝑥 ∈ 𝑅𝑛 𝑥 ≤ 𝑟 is contained in 𝐷. 

 Let U be a nonempty set in Br, such that

 Its boundary is the surface 𝑉(𝑥) = 0.

 Example: 𝑉 𝑥 =
1

2
(𝑥1

2 − 𝑥2
2)

– 𝑉 0 = 0, 𝑉 𝑥0 > 0 in the hatched area:

– 𝑉 𝑥 = 0, at the boundaries of 𝑥1 = ±𝑥2
– The region U is the hatched area
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Lyapunov Direct Method
30

• Instability Theorem: (Chetaev)

 Proof: As long as 𝑥(𝑡) is inside 𝑈, 𝑉 𝑥 𝑡 ≥ 𝑎, since ሶ𝑉(𝑥) > 0. 

• Let

• Then 𝛾 > 0 and

• This shows that 𝑥(𝑡) have to leave 𝑈, because 𝑉(𝑥) is bounded on 𝑈.

• 𝑥(𝑡) cannot leave from the surface boundary since V 𝑥 = 0 while 𝑉 𝑥 𝑡 ≥ 𝑎. 

• Therefore it shall leave from the sphere 𝑥 = 𝑟.
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Lyapunov Direct Method
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• Instability Theorem: (Chetaev)

 Consider the system: 

• Where 𝑔1, 𝑔2 are locally Lipschitz, and satisfy the following in a region 𝐷.

• These imply that 𝑔1(0) = 𝑔2(0) = 0. Hence the origin is the eq. point.

• Consider the function 𝑉(𝑥) =
1

2
(𝑥1

2 − 𝑥2
2). 𝑉 𝑥 > 0 on the line 𝑥2 = 0.

• The set U is set as before as shown in here.

• while

• Hence,

• Choose 𝑟 < 1/(2𝑘), Then ሶ𝑉 becomes positive, and the origin is unstable.
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Scientist Bio
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Nikolay Gur'yevich Chetaev
(23 November 1902 – 17 October 1959)

Was a Russian Soviet mechanician and mathematician. He is renowned 

from his work on elliptic partial differential equations. He belongs to the 

Kazan school of mathematics. From 1930 to 1940 N. G. Chetaev was a 

professor of Kazan University where he created a scientific school of 

the mathematical theory of stability of motion, where N. Krosovskii was 

a Ph.D. student. 

Chetaev made a number of significant contributions to Mathematical 

Theory of Stability, Analytical Mechanics and Mathematical Physics. His 

major scientific achievements relates to as: The Poincaré equations; 

Lagrange’s theorem of stability of an equilibrium, Poincaré–Lyapunov 

theorem on a periodic motion & Chetaev's theorems; Chetaev’s method 

of constructing Lyapunov functions as a coupling (combination) of first 

integrals; D'Alembert–Lagrange and Gauss Principles.

A representative region for 

Chetaev instability Theorem
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Lyapunov Stability of Autonomous Systems

• Invariant Set Theorems:

 Asymptotic stability needs ሶ𝑉 𝑥 < 0
• In many systems we may reach only to ሶ𝑉 𝑥 ≤ 0
• Use invariant set to prove asymptotic stability

 A set M is an invariant set with respect to (3.1) if

𝑥 0 ∈ 𝑀 ⇒ 𝑥 𝑡 ∈ 𝑀, ∀𝑡 ∈ 𝑅
 A set M is an positively invariant set with respect to (3.1) if

𝑥 0 ∈ 𝑀 ⇒ 𝑥 𝑡 ∈ 𝑀, ∀𝑡 ≥ 0
• Examples of invariant sets 

– An equilibrium point

– A limit cycle

– Any trajectory

– The RoA of an eq. point or a limit cycle

– The whole state space 
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Invariant Set Theorem
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• Barbashin - Krasovskii - Lasalle’s Theorem:

• It is not directly stated that 𝑉(𝑥) > 0, But

• The function V is continuous on the compact set Ω

– It is bounded from below (somehow positive)

– The set Ωl is called a compact set.

• Largest invariant set means the union of all invariant sets.

• This theorem introduces the notion of Region of Attraction.

• Can be used for Eq. point, limit cycle, or any invariant set.
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Invariant Set Theorem
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• Lasalle’s Corollaries:

 Local Asymptotic Stability

 Global Asymptotic Stability
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Invariant Set Theorem
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 Example: Mass with nonlinear spring-damper

• Consider the system:

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 ሶ𝑥 + 𝑘0 + 𝑘1𝑥
3 = 0

• Lyapunov candidate

– 𝑉 𝑥 =
1

2
𝑚 ሶ𝑥2 +

1

2
𝑘0𝑥

2 +
1

4
𝑘1𝑥

4

– ሶ𝑉 𝑥 = 𝑚 ሶ𝑥 ሷ𝑥 + 𝑘0𝑥 + 𝑘1𝑥
3 ሶ𝑥 = ሶ𝑥 −𝑐 ሶ𝑥 ሶ𝑥 = −𝑐 ሶ𝑥 3

– The set R where ሶ𝑉 𝑥 = 0 is 𝑅 = 𝑥, ሶ𝑥 ሶ𝑥 = 0}

– Is the largest invariant set in 𝑅,𝑀 = { 0, 0 }?              

Suppose any arbitrary point of R, such as (𝑥1, 0) is also in M.

Any trajectory passing through this point must satisfy: 

ሷ𝑥 = −
𝑘0

𝑚
𝑥 −

𝑘1

𝑚
𝑥3 ≠ 0, hence, the trajectory moves out from R.

– The equilibrium point is asymptotically stable. 

x

x

1x
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Invariant Set Theorem
38

 Example 2: 

• System dynamics:

– In which,

• Eq. point @ origin.

• Lyapunov Candidate:

– In the domain                                          is positive definite. 

• Lyapunov function derivative:

– Positive semi-definite, needs invariant set Theorem.
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Invariant Set Theorem
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 Example 2: (cont.)

• Characterize the Set 𝑅 where:

• Hence, 𝑅 = 𝑥1, 𝑥2 𝑥2 = 0}

• Show that M includes only origin:

– Suppose x(t) is a trajectory belonging to R, then

– Hence, the solution to this trajectory is only the origin. 

• The equilibrium point in asymptotically stable. 
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Invariant Set Theorem
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 Example 3: Region of Attraction

• System dynamics:

• Eq. point is @ origin.

• Lyapunov candidate: 

– for 𝑙 = 2, the region Ω𝑙 is defined by 𝑉(𝑥) < 2 is a compact set.

• Derivative along trajectory:

– For the set Ω𝑙 the derivative is always negative except @ origin.

• The set 𝑅 includes only the origin.

– Invariant Set Theorem conditions hold.

– The eq. point is locally asymptotically stable.

– The Region of Attraction is estimated by Ω𝑙 a circle with radius 𝑟 = 2.
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Invariant Set Theorem
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 Example 4: Attractive Limit Cycle

• System dynamics

• There exist an invariant set:

– Since, its derivative is zero on the set.

• On the invariant set:

– Simplified system dynamics

– Invariant set is a limit cycle

• Is the limit cycle attractive?

– Lyapunov candidate:

– Physical insight: distance to the limit cycle.

0
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Invariant Set Theorem
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 Example 4: Attractive Limit Cycle (cont.)

• For any 𝑙 > 0, 

– the region Ω𝑙 defined by 𝑉(𝑥) < 𝑙 is a compact set.

• Lyapunov function derivative: 

– from before,

– ሶ𝑉 𝑥 < 0 everywhere except at 

• 𝑥1
4 + 2𝑥2

2 = 10 The limit Cycle.

• 𝑥1
10 + 3𝑥2

6 = 0 The Eq. point @ origin.

– The eq. point at origin is unstable.

• From invariant set theorem, all the trajectories converge to 

the limit cycle.
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Invariant Set Theorem
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 Example 4: Attractive Limit Cycle (cont.)

• Phase portrait:
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44

Nikolay Nikolayevich Krasovskii 

(7 September 1924 – 4 April 2012)

Was a prominent Russian mathematician who worked in the 

mathematical theory of control, the theory of dynamical systems, and the 

theory of differential games. He was the author of Krasovskii-LaSalle

principle and the chief of the Ural scientific school in mathematical theory of 

control and the theory of differential games. In 1963 Stanford University

Press published a translation of his book Stability of Motion: applications of 
Lyapunov's second method to differential systems and equations with delay that 

had been prepared by Joel Lee Brenner. Krasovskii received many honours 

for his contributions. He was elected a corresponding member of the USSR

Academy of Sciences in 1964 and became a full member in 1968. He was 

awarded the M V Lomonosov Gold Medal of the Russian Academy of 

Sciences, the A M Lyapunov Gold Medal, the Demidov Prize in physics and 

mathematics, and the 'Triumph' Prize which is awarded to the leading scientists 

for their contribution to Russian and world science as a whole.
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Scientist Bio
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Joseph P. LaSalle 
(28 May 1916 - 7 July 1983)

Was an American mathematician, specialising in dynamical

systems and responsible for important contributions 

to stability theory, such as LaSalle's invariance

principle which bears his name. Joseph LaSalle defended 

his Ph.D. thesis on ″Pseudo-Normed Linear Sets over 
Valued Rings″ at the California Institute of Technology in 

1941. During a visit to Princeton in 1947–1948, LaSalle 

developed a deep interest in differential equations through 

his interaction with Solomon Lefschetz and Richard

Bellman. he worked closely with Lefschetz and in 1960 

published his extension of Lyapunov stability 

theory,[5] known today as LaSalle's invariance principle.

For the proof of LaSalle’s 

invariance principle

https://en.wikipedia.org/wiki/Ph.D.
https://en.wikipedia.org/wiki/Joseph_P._LaSalle#cite_note-lasalleinv-5
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In this chapter we review the general stability analysis of autonomous nonlinear system, through Lyapunov direct and indirect methods, and 
invariance principles. Furthermore, Lyapunov function generation and Lyapunov-based controller design are reviewed in detail. This chapter 
contains the most important analysis design of nonlinear systems.
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Lyapunov Stability of Autonomous Systems

• Linear Systems and Linearization

 Consider the linear time invariant system  

ሶ𝑥 = 𝐴𝑥 (3.9)

• That has an eq. point @ origin. 

• The eq. point is isolated if det 𝐴 ≠ 0.

• The solution for a given initial state 𝑥(0):
𝑥 𝑡 = exp 𝐴𝑡 𝑥 0

47
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Linear Systems and Linearization

• Stability of LTI system

 When all eigenvalues of 𝐴 satisfy Re𝜆𝑖 < 0, 

• 𝐴 is called Hurwitz matrix.

 For stability analysis consider 𝑉 𝑥 = 𝑥𝑇𝑃𝑥

• Where 𝑃 is a real, symmetric and positive definite matrix.

• Then

• Where 𝑄 is a positive definite matrix defined by

• This is called Lyapunov Equation.

48
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Linear Systems and Linearization

• Stability of LTI system

 Proof: 

• Sufficiency follows from Theorem 3.1

• For Necessity assume all eigenvalues of 𝐴 satisfy Re𝜆𝑖 < 0, and

• P exists and is proved to be positive definite by contradiction :

49
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Linear Systems and Linearization

• Stability of LTI system

 Proof: (Cont.) 

• Since exp(𝐴𝑡) is nonsingular, this results in contradiction.

– Substitute (3.13) in (3.12) 

– This shows that P is a solution of (3.12). 

– Prove it is a unique solution by contradiction

– Pre- post multiply 

by exp 𝐴𝑇𝑡

– Hence, 

– Since, exp 𝐴0 = I:

– Therefore, ෨𝑃 = 𝑃.

50
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Linear Systems and Linearization

• Linearization of nonlinear system

 Consider ሶ𝑥 = 𝑓 𝑥 , and 0,0 its eq. point.

• Let 𝑓: 𝐷 → 𝑅𝑛 be a continuously differentiable vector field

• By mean value theorem

• Where 𝑧𝑖 lies on the line segment from 0 to 𝑥

• Since 𝑓𝑖 0 = 0, write

51

0 𝑧𝑖 𝑥
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Linear Systems and Linearization

• Linearization of nonlinear system

• The function 𝑔𝑖 𝑥 satisfies:

• By continuity

• This suggests that in a small neighborhood of the origin we can 

approximate ሶ𝑥 = 𝑓(𝑥) by its linearization:

• How about the stability of the origin? Any Condition?

52
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• Stability Analysis by Linearization

• Lyapunov indirect or linearization method

• If eq. point is non-hyperbolic  Inconclusive!

Linear Systems and Linearization
53
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Linear Systems and Linearization
54

• Stability Analysis by Linearization

 Example 1:  

• Consider the system ሶ𝑥 = 𝑎𝑥3

– The eigenvalue is on imaginary axis  Inconclusive!

• Example 2:  Pendulum

– The eq. points are @ (0,0) and (π,0).

– Jacobian:
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Linear Systems and Linearization
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• Stability Analysis by Linearization

• Example 2:  Pendulum (cont.)

– For (0,0) Eq. point :

• All Eigenvalues Hurwitz  Asymptotically Stable

– For (𝜋, 0) eq. point.

• Change variables 𝑧1 = 𝑥1 − 𝜋, 𝑧2 = 𝑥2
• Chack Jacobian @ 𝑧 = 0

• One of the eigenvalues is not Hurwitz  Unstable
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Lyapunov Stability of Autonomous Systems
57

• Lyapunov Function Generation

 Krasovskii Method

: 3.1 ,
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Lyapunov Function Generation
58

• Krasovskii Method

• Example: Consider the system

– The Jacobian: 

– F is negative definite for the whole space.

– Lyapunov Function

– It is Radially unbounded

– The Eq. point is globally asymptotically stable.
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• Lyapunov Function Generation

 Krasovskii Method

• Proof Idea:

– If 𝐹 < 0 and 𝑄 > 0, then ሶ𝑉 𝑥 < 0.

Lyapunov Function Generation
59
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Lyapunov Function Generation
60

• Variable Gradient Method

 Search backward, start  with ሶ𝑉 𝑥 < 0, then find 𝑉(𝑥). 

• Procedure:

– Suppose 𝑔(𝑥) is the gradient of 𝑉(𝑥):

– Derivative of 𝑉(𝑥) along trajectory:

– Choose 𝑔(𝑥) such that ሶ𝑉 𝑥 < 0, while 𝑉 𝑥 > 0.

– For g(x) to be gradient of a scalar function:

– Under this constraint choose 𝑔(𝑥) such that 𝑔𝑇 𝑥 𝑓 𝑥 < 0
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Lyapunov Function Generation
61

• Variable Gradient Method

• Procedure (cont.):

– Then generate 𝑉(𝑥) by integration

– The integration can be taken along any path, but usually it is taken 

along the principal axes:

– Leave some parameters of 𝑔(𝑥) undetermined, and try to choose 

them to ensure that 𝑉(𝑥) positive.
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Lyapunov Function Generation
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• Variable Gradient Method

 Example 1:

• Consider the system:

– where, 𝑎 > 0, ℎ 0 = 0 𝑎𝑛𝑑 𝑦ℎ 𝑦 > 0 , ∀𝑦 ∈ (−𝑏 , 𝑐 ) .

• To ensure ሶ𝑉 𝑥 < 0 → 𝑔𝑇 𝑥 𝑓 𝑥 < 0

• The Lypunov function is:

• Let us try

• Gradient condition
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Lyapunov Function Generation
63

• Variable Gradient Method

 Example 1: (cont.)

• Derivative of Ly. f. 

– To cancel cross terms

– Therefore, 

– To simplify assign 𝛽, 𝛾, and 𝛿 to be constant but keep 𝛼(𝑥)

• From gradient condition

– α(x) = α(x1) and β = γ.

–
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Lyapunov Function Generation
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• Variable Gradient Method

 Example 1: (cont.)

• Integrate g(x) to get the Ly. function

– in which,

• Choose 𝛿 > 0, and 0 < 𝛾 < 𝛼𝛿 to ensure 𝑉 𝑥 > 0, and ሶ𝑉 𝑥 < 0
– For example 𝛾 = 𝑎𝑘𝛿 for 0 < 𝑘 < 1

– Then,

– 𝑉 𝑥 > 0, and ሶ𝑉 𝑥 < 0 for 𝐷 = {𝑥 ∈ 𝑅2| − 𝑏 < 𝑥1 < 𝑐}

– The eq. point is asymptotically stable.                 
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Lyapunov Stability of Autonomous Systems
66

• Lyapunov Based Controller Design

 Example: Robotic Manipulator

• Physically derived Lyapunov function

• System dynamics

• Controller

• Lyapunov Candidate

– Total Energy

• Lyapunov Function Derivative

– Power of the external forces

– Used control law

– Lasalle: Global Asymptotically stable
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Lyapunov Stability of Autonomous Systems
67

• Lyapunov Based Controller Design

 Design Idea: 

• Consider a Lyapunov candidate

• Stability:

– Design the control law as a  nonlinear function to ensure negative 
definiteness of the Ly. F. Derivative.

• Performance:

– Rate of decay is related to the time performance.

• Base of many nonlinear controller designs:

– Back-stepping

– Sliding mode control

– Lyapunov redesign

– . . .
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Lyapunov Stability of Autonomous Systems
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• Lyapunov Based Controller Design

 Example 2: Regulation

• System dynamics:

• Objective

– Push the trajectories toward origin.

• Consider the controller as:

• Lyapunov Candidate:

• Derivative:

• Design u such that             :

– For example,  

– Stability: Lasalle  asymptotically stable eq. point.

– Performance: increase K to have faster response.

– Controller is not unique.

( , )u u x x
2 21/ 2( )V x x 

3 2( )V x x x x u   

( ) 0V x  2 2 3V K x u x x K x x       

3 2x x x u  
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Chapter 3: Lyapunov Stability of 
Autonomous Systems
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